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The capillary instability and break-up of an annular liquid layer coating the inner 
surface of a cylindrical tube while surrounding another core fluid is studied. In  the 
limiting case where the thickness of the layer is almost equal to the radius of the tube, 
we obtain a thread of core fluid suspended in a virtually unbounded ambient liquid. 
The evolution of a layer or thread with a cylindrical or unduloidal interface subject 
to an axisymmetric perturbation is computed using a boundary integral method. It 
is shown that for large and moderate layer thicknesses the instability causes the core 
to transform into an alternating array of primary and secondary spherical drops 
along the centreline of the tube. The relative volume of the drops depends primarily 
on the ratio of the core radius to the tube radius, a/R,  and the type of initial 
perturbation. The evolution of thin layers with a /R  > 0.82 leads to formation of an 
array of lobes or collars. These results are used to assess the accuracy of previous 
approximate analyses based on lubrication flow and minimization of interfacial area. 

1. Introduction 
When a fluid displaces a liquid in a porous medium or through a channel, it leaves 

behind a fluid layer that coats the grains of the porous medium or the walls of the 
channel. After the flow has stopped, the layer evolves under the action of 
hydrodynamic instabilities due to gravitational and capillary forces. Roughly 
speaking, the evolution due to capillary forces may lead to formation of two types 
of structure : pendant or sessile lobes, also termed collars, and lenticular bridges. The 
former are attached to the surface of the host solid medium, and the latter extend 
across and occlude the passages of the host medium. The type of emerging structure 
depends primarily on the relative magnitudes of the thickness of the layer and the 
characteristic length and radius of curvature of the channels of the host medium. 

To develop an understanding of the behaviour of a coated liquid layer, it  is useful 
to consider a simple model consisting of an annular laying lining the inner surface of 
a straight cylindrical tube, while the core of the tube is occupied by another fluid. 
The annular layer not only provides us with a viable working model, but also is 
directly relevant to the behaviour of the gel that coats the micro-airways of the lungs 
(George et al. 1990; Johnson et al. 1991). The collapse of this gel and consequent 
occlusion of bronchioles signals the onset of respiratory problems and allows the 
multiplication of infectious organisms. When the thickness of the annular layer is 
almost equal to the radius of the tube, the core reduces to a thin thread, and the effect 
of the tube on the motion of the interface becomes insignificant. The instability and 
break-up of fluid threads are relevant to a broad class of chemical engineering 
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processes involving the dispersion and mixing of immiscible fluids (Khakhar & 
Ottino 1987). 

One way to assess the behaviour of an annular layer is to study its stability subject 
to controlled perturbations. In the unperturbed state, the layer is assumed to be in 
hydrostatic equilibrium where the mean curvature of the interface between the layer 
and the core is constant. Uniform mean curvature implies constant jump in the 
pressure across the interface, absence of pressure variations within the layer, and 
lack of a driving mechanism for the deformation of the interface. Restricting our 
attention to smooth axisymmetric and periodic interfaces we find a family of 
hydrostatic shapes, termed unduloids, produced by rolling an ellipse along the 
centreline of a cylindrical tube and identifying the trace of one focus of the ellipse 
with the interface between the layer and the core (Everett & Haynes 1972). When the 
ellipse degenerates to a sphere, the trace is a straight line corresponding to a 
cylindrical core. An ellipse with large eccentricity resembles a straight segment, the 
trace is a sequence of circles, and the core is composed of an array of touching 
spheres. 

Goren (1962) investigated the linear instability of a cylindrical annular layer 
coating the inner or outer surface of a cylinder subject to axisymmetric disturbances, 
for the case where the viscosity of the core or ambient fluid vanishes. His 
computations revealed that the layer is always unstable to sufficiently long waves, 
and there is a finite wavelength with maximum growth rate. In the limit where the 
radius of the core becomes small, his results reduce to those of Tomotika (1936) for 
a thread of viscous fluid suspended in another unbounded liquid. Everett & Haynes 
(1972) studied the stability of stationary annular collars with unduloidal interfaces 
and found that there is a maximum volume above which a collar might become 
unstable and transform into a lenticular bridge. Their work was motivated by the 
physics of capillary condensation in porous media. More recently, Georgiou et al. 
(1991) studied the linear instability of an annular film of an electrolyte coating the 
inner surface of a cylindrical tube including both capillary and electrostatic forces. 

The nonlinear evolution and rupture of annular films was studied in the laboratory 
by Goldsmith & Mason (1963), Goren (1964), Everett & Haynes (1972), and more 
recently by Gauglitz & Radke (1988). The experiments of Goren involved coating the 
cylindrical wire and recording the subsequent evolution of the interface. All other 
experiments were conducted by introducing a long bubble into a liquid residing in a 
cylindrical tube, and observing the subsequent evolution of the interface. Gauglitz & 
Radke, in particular, showed that a thin annular film breaks up into a combination 
of collars and bridges, and presented data for the number of developed lenses as a 
function of the thickness of the annular layer. 

The nonlinear evolution of a stationary annular layer was studied theoretically on 
several occasions using approximate methods. Goren (1964) computed transient 
shapes of an annular layer coating the exterior of a cylindrical tube. In his analysis, 
he neglected the effect of the fluid flow, stipulated that the surface area of the 
interface is minimum for given layer volume and amplitude of the free surface, and 
regarded the amplitude of the free surface as a known function of time. His 
computations showed that the instability leads to formation of periodic toroidal 
collars connected by thin cylindrical bridges, in good agreement with his 
experimental observations. Goren noted that his quasi-hydrostatic model is also 
applicable for annular layers coating the inner surface of the tube. 

Hammond (1983) used the lubrication approximation to devise a model for 
describing the evolution of a thin annular film, and found that the breakup of the film 
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may lead to formation of several primary and secondary collars of varying 
dimensions within one wavelength of the perturbation. One interesting finding is 
that, at large times, the axial dimension of the primary collars tends to the value 
2xR, where R is the radius of the tube, independently of the wavelength of the initial 
perturbation. Gauglitz & Radke (1988) improved the accuracy of Hammond’s 
equations, and computed a critical film thickness above which the instability of the 
layer leads to formation of bridges instead of collars. Their results will be discussed 
further in $3. Johnson et al. (1991) developed an integral method for thin films based 
on the boundary-layer approximation including the effects of inertia, and studied the 
characteristic time for bridge formation. The results were discussed in the context of 
pulmonary pathology. 

From a more general perspective, the capillary instability of a stationary annular 
layer may be considered as a special case of the instability of the interface between 
two co-flowing fluids arranged in a core-annulus configuration. Recently, there has 
been renewed interest in this more general problem, motivated primarily by 
applications in lubricated pipelining. Linear and weakly nonlinear stability analyses 
were carried out by Russo & Steen (1989) and Hu  & Joseph (1989), and the nonlinear 
evolution of thin layers was computed by Papageorgiou, Malderelli & Rumschitzki 
(1990). 

In this work we study the capillary instability of a stationary annular layer 
coating the inner surface of a circular tube when the layer is subjected to 
axisymmetric disturbances and the flow occurs under conditions of creeping motion. 
Our objective is to present an integrated parametric investigation which will extend 
and bridge the gaps between the asymptotic cases considered by previous authors 
and will allow us to evaluate the accuracy of approximate analyses. We consider the 
behaviour of annular layers with cylindrical and unduloidal interfaces, study the 
evolution of layers or arbitrary thickness, and describe the motion for large 
interfacial deformations up to, and after the point where the core breaks up to form 
arrays of collars or lenses. For layers of small thickness, we compare our results with 
predictions of approximate analyses based on the assumption of lubrication flow. To 
treat the limiting case of a layer whose thickness is nearly equal to the radius of the 
tube, we consider the evolution of an unbounded thread in an infinite ambient fluid. 
By comparing the evolution of a thread to that of a core, we are able to study the 
precise effect of the wall on the qualitative and quantitative features of evolution. 

Our analysis is based on numerical solutions of the equations of creeping flow and 
is carried out using a boundary integral method (Pozrikidis 1992~) .  One novel 
feature of our formulation is the use of an axisymmetric period Green’s function that 
vanishes over the cylinder. Using this Green’s function, we are able to express the 
velocity field as an integral over the trace of the interface in a meridional plane. 

In the case of the suspended thread we shall consider situations where the viscosity 
of the suspending fluid is different to that of the thread. In the case of the annular 
layer, however, we shall confine our attention to situations in which the viscosity of 
the core is equal to that of the annular fluid, as this permits a critical simplification 
in our numerical procedure. At first sight, it might appear that the assumption of 
equal viscosities is quite specialized. Previous experience, as well as present 
computations for the thread, however, indicate that this case is typical of those 
where the viscosity of the core is smaller than or comparable to that of the annular 
fluid (Pozrikidis 1990). This is certainly true in the case of thin annular layers, as 
shown rigorously in the asymptotic analysis of Hammond (1983). 
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2. Problem formulation and solution 
We consider the evolution of an axisymmetric annular layer of viscosity p wetting 

the inner surface of a cylindrical tube while surrounding another core fluid with 
viscosity hp,  when it is subjected to axisymmetric disturbances of wavelength L. 
Gravitational forces are assumed to be negligible compared to capillary forces and 
thus, they are overlooked. When the radius of the tube, R, is large compared to the 
radius of the core, a, we obtain a thread suspended in an infinite ambient fluid. 

In the absence of an imposed axial flow the annular layer might assumed a 
hydrostatic configuration in which the mean curvature of the interface is constant. 
Such configurations are provided by a cylindrical core and the more general case of 
a core whose interface is an unduloid, constructed by rolling an ellipse along the 
centreline of the tube. We seek to assess the stability of these hydrostatic 
configurations by computing the linear and nonlinear evolutions of the layer subject 
to axisymmetric disturbances. 

When the thickness of the annular layer is comparable to the radius of the core, 
an effective Reynolds number of the flow due to the instability may be defined as 
J = pyR/p2,  where y is the interfacial tension (Goren 1962). Johnson et al. (1991) 
discuss the effective Reynolds number for thin annular layers. Assuming that the 
effective Reynolds number is small, we neglect inertial effects in the flow and 
introduce a boundary integral representation applicable for Stokes flow. Thus, we 
express the velocity as a distribution of the fundamental flow due to a ring of point 
forces over one period of the trace of the interface in an azimuthal plane, C, as 

F 

where M is the axisymmetric Green function that vanishes over the tube and is 
periodic in the axial direction with period L,  and Greek subscripts take the values x 
and CT to indicate, respectively, the axial and radial directions. The function q 
represents the density of the ring distribution. The derivation and computation of M 
are discussed by Pozrikidis (1992a, b )  and Newhouse (1991). Requiring continuity of 
velocity across the interface and the usual boundary condition for the jump in 
surface force across the interface, we obtain the following Fredholm integral equation 
of the second kind for q 

where the point xo lies on C ,  p = (h- l ) / ( A  + l ) ,  k, is the mean curvature of the 
interface, Q is a singular kernel, and PV indicates the principal value of the integral. 
Details of the boundary integral representation are given by Pozrikidis (1990, 
1992 a).  Our numerical procedure involves solving (2.2) for q using Picard iterations, 
and then computing the velocity field using the defining equation (2.1). 

Owing to the complicated nature of the kernel Q in the case of an annular layer, 
we shall consider only the case h = 1 or p = 0 for which the coefficient in front of the 
integral in (2.2) vanishes, and q is equal to the first term on the right-hand side. In 
the case of a suspended thread we shall consider evolutions for other values of A. The 
numerical procedure involves tracing the interface with a set of marker points, 
computing the velocity, and advancing the position of the marker points. Details are 
given by Newhouse (1991). All calculations were executed on the CRAY-Y/MP 



The capillary instability of annular layers and liquid threads 197 

(a) 0.036 

0.024 

a P l Y  

0.012 

(b) 
0.10 

0.05 

0.5 1 .o 
ka 

0 0.5 1 .o 0 
ka 

FIQURE 1. The reduced linear growth rate of a cylindrical annular layer of core radius a wetting the 
inner surface of a tube of radius R,  as a function of the reduced wave number ka; (a)  the effect of 
core radius for viscosity ratio A = 1 ; (b )  the effect of A for a thread, a /R  = 0. 

computer of the San Diego Supercomputer Center. A complete computation required 
as much as 8 h of CPU time. 

3. Results and discussion 
We begin our studies by considering the initial growth of small axisymmetric 

disturbances using standard linear stability theory. Thus, we introduce axisymmetric 
perturbations which are proportional to exp (at + ikx), where a is the growth rate and 
k is the wavenumber, and after neglecting inertial effects, we derive a relation of the 
form apa/y = F(h,  ka,a/R),  where F is an involved function of its arguments. The 
derivation and exact form of F are presented by Georgiou et al. (1991) and Newhouse 

In figure l ( a )  we plot the reduced growth rate apaly as a function of ka for 
h = 1 and several values of the radii ratio a/R.  We observe that short wavelength 
disturbances with ka > 1 are stable, long wavelength disturbances with ka < 1 are 
unstable, and the critical wavenumber for incipient stability ka = 1 is independent 
of the ratio a/R.  As the radius of the core is increased, a / R  + 1, that is, the thickness 
of the annular layer is decreased, the growth rate is markedly reduced. These results 
confirm our physical intuition that the presence of the wall has a strong stabilizing 
effect on the behaviour of thin annular films. It is interesting to note that the 
wavenumber with maximum growth rate is rather insensitive to the value of a/R.  
To examine the effect of the viscosity ratio A, in figure l ( b )  we plot the reduced 
growth rate for a suspended thread, a/R = 0, as a function of ka for several values 
of A. Clearly, as h is increased and the core becomes more viscous, the growth rate 
is reduced and the wavenumber with maximum growth rate shifts to smaller values. 
Georgiou et al. (1991) show that inertial effects act to reduce the growth rate of the 
disturbance. 

We consider next the evolution of small perturbations beyond the linear growth 
regime using the boundary integral method. In  our investigation, we seek to describe 
the growth of the most unstable perturbation for given values of a / R  and A. Unless 
stated otherwise, we consider perturbations whose reduced wavenumber ka 
corresponds to the maximum growth rate according to linear theory. At the outset, 
we non-dimensionalize our variables using as characteristic length the inverse 

(1991). 
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(4 (b )  

FIQURE 2. Characteristic stages in the evolution of an annular layer with a / R  = 0.40 and h = 1 for 
the most unstable perturbation at ( a )  t = 285, 308, ( b )  t = 314, (c) t = 317, (d )  t = 319, (e) t = 320, 
(f) t = m .  

wavenumber 1/ k and characteristic time p a l y .  In dimensionless variables, the 
motion is a function of the core radius ka, the radii ratio a/R, and the viscosity ratio 
A. For annular layers we shall present results only for h = 1, whereas for unbounded 
threads we shall consider the motion for several other values of A. 

3.1. The case h = 1 

In figure 2 we present characteristic stages in the evolution of the most unstable 
perturbation ka = 0.6679 for an annular layer with a /R  = 0.4. Each frame shows one 
period of the interface. The upper and lower solid horizontal lines represent the 
surface of the tube, the upper dashed line represents the centreline, and the lower 
dashed line represents the position of the unperturbed interface. In the first stage of 
evolution, the core develops an hour-glass shape with a thinning neck and a 
thickening end (figure 2 a ) .  In the second stage, the core transforms into a series of 
primary drops which are linked by nearly cylindrical threads (figure 2 b ) .  The third 
stage begins with a bulging of the threads and subsequent formation of slender drops 
with pointed ends (figure 2c). To continue this calculation it was necessary to 
disconnect the primary drops from the slender secondary drops at that point in time 
where the interface crossed the centreline, owing to numerical error. In reality, the 
process and time of breakup will be determined by a local dynamics which is 
dominated by intermolecular forces, but these are not included in our formulation. 

In figures 2 ( d ,  e )  we illustrate the evolution after breakup. After the slender 
secondary drops have been disconnected, they shrink and obtain a compact shape 
under the action of surface tension. The contraction of the slender drops occurs on 
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FIGURE 3. (a )  Characteristic stages in the evolution of an annular layer with a / R  = 0.80 and 
h = 1 subjected to the most unstable perturbation at t = 6473,7188,7381 ; (a) corresponding stages 
in the evolution of an unbounded thread at t = 134, 153, 167 ; (c) the evolution of the amplitude 
of the trough (upper solid line) and crest (lower solid line) of the interfacial wave. ---, predictions 
of linear theory. 

f x 

a timescale much shorter than that of the development of the link-drop structure. 
During the contraction process, the boundary of the slender drops develops a wavy 
pattern which indicates the onset of a secondary capillary instability. Our 
calculations suggest, however, that this instability does not have a permanent effect 
on the long-time behaviour of these drops. At large times, the core is expected to 
obtain a composite shape that consists of an alternating sequence of primary and 
secondary spherical drops, as illustrated in figure 2 (f). 

The evolution of layers with a/R < 0.4 is quite similar to that illustrated in figure 
2 (a-f), involving the development of the drop-link structure and the reduction of the 
core to an alternating series of primary and secondary spherical drops. The wall has 
a minor influence on the qualitative features of the evolution as well as the timescale 
of the instability. 

In  figure 3(a ) ,  we present characteristic stages in the evolution of a thin layer 
a/R = 0.8 for ka = 0.7014. To illustrate the effect of the wall, in figure 3 (b )  we show 
corresponding stages of an unbounded thread, a/R = 0. In the presence of the tube 
the trough of the interface is much sharper, the primary drop is more elongated, and 
the link is shorter. These observations suggest that the wall acts not only to slow 
down the motion, by almost two orders of magnitude, but also to modify the 
geometry of the emerging structures. At  large times, the link depicted in figure 3 (a) 
is expected to collapse at the centreline forming an axisymmetric lenticular bridge. 
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FIGURE 4. Instantaneous streamline patterns for (a )  an annular layer with a/R = 0.40, 
ka = 0.668 at  t = 292, (b) a thread with ka = 0.562 a t  t = 108. 

Next, we discuss the motion in a more quantitative sense. In  figure 3 (c) we plot the 
amplitudes of the crest and trough of the interface on a semi-logarithmic scale, 
corresponding, respectively, to the maximum and minimum core radii, for the 
evolutions illustrated in figure 3 (a, b) .  The dashed line represents the predictions of 
linear stability theory, the upper solid line represents the trough close to the 
centreline, and the lower solid lines represents the crest close to the wall. There is an 
excellent agreement between the numerical results and the predictions of linear 
stability theory at  the initial stages of motion, and a fair agreement a t  the advanced 
stages of motion where the interface no longer has a sinusoidal shape. It is worth 
noting that our computations predict a faster growth of the trough and a slower 
growth of the crest in the advanced stages of motion. The prominent differences in 
the magnitude of the slopes for a / R  = 0.8, and 0 is evidence of the strong influence 
of the wall. 

Figure 3 (c) indicates that  linear instability analysis might provide us with a fairly 
accurate estimate of the bridge formation, or breakup time. We find that this is true 
especially for layers of moderate and large thickness. A convenient measure of the 
breakup time is the time a t  which the thickness of the core midway between two 
primary drops is minimum ; after this time, the connecting link starts bulging, 
transforming into a slender drop. We thus compute the ratio of the actual breakup 
time to that predicted by linear theory as a function of a/R for the most unstable 
mode. This ratio is approximately 1.09 for the unbounded thread, a/R = 0, decreases 
to approximately 1 a t  a / R  = 0.2, and continues decreasing to 0.82 a t  a/R = 0.8. 

To obtain further insights into the kinematics of the transient flow, in figure 4 we 
present instantaneous streamline patterns for an annular layer with a/R = 0.40 and 
an unbounded thread, a/R = 0. In  both cases we observe a symmetric set of two 
counter-rotating eddies driving fluid away from the connecting links into the 
developing primary drops. 

In all of the cases considered so far, the instability has led to breakup of the core 
into an array of primary drops which are separated by bridges of annular fluid. At 
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FIGURE 5. The evolution of the maximum and minimum thicknesses of thin annular layers, 
reduced by the initial thickness, for the most unstable disturbance. 

this point we turn our attention to the behaviour of thin annular layers, with the 
object of determining whether the motion may lead to rupture of the layer and 
formation of annular lobes instead of lenses. In  figure 5 we plot the maximum and 
minimum layer thicknesses reduced by the corresponding initial thickness, as a 
function of non-dimensional time t y / p R  for the most unstable mode and a sequence 
of thin layers with a / R  = 0 . 8 0 . 9 0 .  The initial shape of the interface is a sinusoidal 
wave with an amplitude of half the undisturbed layer thickness. The results indicate 
that for a / R  = 0.82 the core breaks up when the annular layer has thinned to 31 % 
of its initial thickness. For a / R  = 0.84, however, the layer has become very thin when 
the radius of the core is still moderate, indicating that the layer will rupture before 
the core breaks up. There is similar evidence of annular-layer rupture for thinner 
layers. Unfortunately, the computation of the long-time evolutions for a/R > 0.84 
had to be terminated at an intermediate stage because of the excessive time 
necessary to compute the Green's function at  the thinnest parts of the layer. 

We thus find that, for the most unstable perturbation, the annular layer will form 
annular lobes when a / R  > 0.82, and lenticular bridges when a/R < 0.82. This 
threshold core radius is in good agreement with the value 0.88 suggested by Gauglitz 
& Radke (1988) using an approximate theory for thin layers, and in fair agreement 
with the value 0.91 established experimentally by the same authors and the value 
0.89 suggested by Everett & Haynes (1972) using surface area minimization 
principles. The discrepancies are attributed to differences in initial conditions and 
physical properties of the fluids, as well as lack of perfect spatial periodicity. 

So far we have discussed the evolution of layers subjected to perturbations 
corresponding to the most unstable linear mode for a given radii ratio a/R.  These 
perturbations are expected to prevail in a natural environment. It is of interest next 
to examine the evolution of perturbations with values of ka different to that of the 
most unstable mode which are expected to prevail in a forced environment. As a test 
case we consider a layer with a / R  = 0.40, subjected to perturbations with 
ka = 0.500,0.668 (most unstable), 0.850. We find that as ka is increased, the primary 
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FIQURE 0. The effect of wavenumber ka on the behaviour of an unbounded thread. Advanced stages 
in the evolution of a thread with A = 1 for ( a )  ka = 0.218, t = 170, m,  ( b )  ka = 0.5620 (most 
unstable), t = 115, 00, (c) ku = 0.850, t = 188, co. 

drops obtain a more rounded shape, but the length of the connecting links remains 
virtually constant. For all three values of La, almost 99% of the core fluid ends up 
in the primary spherical drops. 

In figure 6, we illustrate a set of results for an unbounded thread, a/R = 0, for 
ka = 0.218, 0.562 (most unstable), 0.850 at the time when the connecting links start 
bulging. In the right-hand column we present the asymptotic configurations that will 
prevail after the links have disconnected from the primary drops and relaxed into 
secondary spherical droplets. We observe that as ka is increased, both the length and 
volume of the connecting links are reduced. In the asymptotic state shown on the 
right-hand column the core has transformed into an alternating array of primary and 
secondary drops whose volume ratio is a strong function of ka. These results indicate 
that the effect of ka becomes significant at low values of a/R, that is, for thick 
annular layers or unbounded threads. 

We turn next to consider the evolution of layers subjected to a perturbation 
composed of two superposed waves. Our calculations show that the simultaneous 
growth of the two waves leads to formation of two arrays of primary drops with 
different volumes. We seek to establish a criterion for the distribution of the core 
fluid between the two primary arrays, and find it reasonable that the ratio of the 
radii, r1/r2,  and ratio of volumes, v1/v2, of the two primary drops will depend mainly 
on the ratio of the linear growth rates of the two waves, a1/a2. To test this conjecture, 
in figure 7 we plot these ratios with respect to a1/a2 for several annular layers and 
unbounded threads. All data fall nearly in a straight line suggesting a universal 
behaviour. As the ratio of the growth rates increases, the short wave becomes 
progressively more important and the volume of the smaller drop is increased. When 
the two waves have approximately the same growth rates, the volume of the smaller 
drop is nearly half that of the primary drop. 

3.2. Unduloidal layers 
In the second stage of our computations we examine the behaviour of unduloidal 
layers whose surface is the trace of the focus of an ellipse rolling along the centreline 
of the tube. The shape of the unperturbed interface may be characterized by the 
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FIGURE 7. The effect of two-wave, in-phase forcing. A plot of the radii ratio, rl /r8,  and volume ratio, 
v1/v2, of the alternating arrays of drops as a function of the ratio of the linear growth rates of the 
two waves, a,/a2. 

FIGURE 8. (a) The initial and an advanced stage in the evolution of an unduloidal layer for 
a/R = 0.70, e = 0.2, ku = 1.0075, ks = 0.1, and h = 1 ,  at t = 0, 311 ; ( b )  corresponding stages of a 
thread at t = 0, 51. 

eccentricity of the ellipse, e ,  where 0 < e < 1. In the limiting cases e = 0 and 1, the 
interface assumes, respectively, the shape of an infinite cylinder and the surface of 
an array of touching spherical drops. In our investigations, we consider perturbations 
whose wavelength, L,  is identical to the period of the unperturbed interface. 

To establish a connection between unduloidal and cylindrical layers, it is helpful 
to introduce the radius of the equivalent cylindrical core, a = (E/nL)i, where V,  is 
the volume of the unduloidal core over one period. Non-dimensionalizing all lengths 
using the wavenumber k = 2x/L,  we find that, apart from the viscosity ratio, the 
motion is a function of the radii ratio a/R, and either the eccentricity, e ,  or core 
radius ka. When e = 0, ka = 1, which corresponds to the threshold for incipient 
stability of a cylindrical core, and when e = 1, ka = ($)in = 2.565, which lies within 
the stable regime illustrated in figure 2(a,  b ) .  In our numerical investigation, we 
introduce perturbations by displacing the interface in the radial direction by 
E (S+ cos z), in phase with the unperturbed shape, where ks ranges between 0.01 and 
0.1. For a selected value of E the value of 6 is chosen such that the volume of the core 
is preserved. 

In figure 8, we present the initial and an advanced shape of a layer with a /R  = 0.70 
and a thread, a/R = 0, for h = 1, e = 0.2, or ka = 1.0075, and ks = 0.1. The lower 
dashed line represents the interface of the equivalent cylindrical core. This value of 
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FIGURE 9. Instantaneous streamline patterns for e = 0.2, a /R  = 0.4, A = 1 at (a )  t = 0, 
( b )  t = 3.75, (c) = 31.5. 

ka lies within the stable regime, but is very close to the threshold for neutral stability 
ka = 1. The shape of the unperturbed core is quite similar to the intermediate hour- 
glass shape observed in the evolution of an unstable cylindrical core. In both of the 
cases shown in figure 8, the evolution leads to the formation of an array of primary 
drops connected by links. The differences between the evolutions of the layer and 
thread are similar to those discussed previously for cylindrical interfaces ; the annular 
layer develops shorter links and sharper peaks. 

In figure 9 we present two sequences of instantaneous streamline patterns for an 
unduloidal layers. In the initial stage of evolution, there are four eddies within each 
period, and the associated motion causes a reduction of the extrema of the interface. 
As the instability develops, the central eddies grow in size displacing the outer eddies 
to the right and left. Finally, the outer eddies disappear and the central eddies take 
over the motion causing the core to develop the familiar drop-link structure. 

Further computations suggested that unduloidal layers are unstable, that is, there 
is no combination of e and a / R  such that a perturbed interface returns to the original 
constant curvature configuration. In all cases, the cores develop drop-link structures 
similar to those discussed previously for the cylindrical shape. In some cases we 
found that the perturbation initially reduced, suggesting that the perturbation is 
decaying, but after a short period of decay, it began to grow. This behaviour is due 
to the competition between a decaying and a growing normal mode inherent in the 
initial perturbation. 

3.3. The e#ect of A 
We turn next to investigate the effect of the viscosity ratio A. For reasons stated 
earlier, we confine our attention to the unbounded thread, a / R  = 0. In figure 10 we 
present advanced stages in the evolution of the most unstable mode for A = 0.1, 1.0, 
and 10.0. In all three cases we observe formation of the drop-link structure. As A is 
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FIGURE 10. The effect of the viscosity ratio on the evolution of a thread subjected to the most 
unstable perturbation; (a) A = 0.1, b = 0.5687, t = 37.25, ( b )  h = 1, b = 0.5620, t = 115, 
(c) h = 10, ka = 0.4076, t = 418. 
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FIQURE 11. The fraction of the core fluid, f, contained in the primary drops as a function 

of ka for A = 0.10, 1, 10. 

increased, the link becomes longer, while the ratio of the actual rupture time to that 
predicted by linear stability theory increases from 1.02 at A = 0.10, to 1.20 at 
h = 10. 

To examine the effect of h on the size of the developing drops, in figure 11 we plot 
the fraction of the core fluid contained in the primary drops, f ,  as a function of ka for 
h = 0.10, 1,  and 10. In  all cases, as ka is increased, fincreases, becomes almost equal 
to 1 at the value of ka corresponding to the most unstable mode, and then, it remains 
constant. We conclude that for values of ka larger than that corresponding to the 
most unstable mode, h plays a secondary role in determining the asymptotic shape 
of the core a t  large times. 
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FIQURE 12. Comparison between -, the boundary integral results and ---, predictions of a 
lubrication flow model of Hammond, for a/R = 0.90; (a )  t = 2705, (b )  t = 4987. The time has been 
scaled with p R / y .  

3.4. Comparison with approximate theories 
We have discussed the nonlinear instability of annular layers and threads and 
demonstrated that the motion may lead to formation of arrays of drops separated by 
bridges and annular lobes. Our computations provide precise information on the 
conditions under which these two behaviours occur, and illustrate the effect of the 
geometrical and physical parameters of the problem. It is of interest now to use our 
numerical results to  assess the accuracy of previous approximate analyses. 

Hammond (1983) developed an approximate theory for the evolution of a thin 
annular film based on the assumption of lubrication flow. His analysis proceeds by 
introducing the parameter B = ( R - a ) / R  and scaling the axial coordinate with the 
radius of the tube, R, the radial coordinate with the initial thickness of the layer, 
h = R - a ,  and time with pR/(ye3) .  Assuming that B Q 1, BA 4 1 and using the 
lubrication approximation, Hammond derived the following partial differential 
equation for the reduced film thickness H 

where t is the reduced time and z is the reduced axial coordinate. To leading order, 
the lubrication approximation disregards the flow in the core. 

To compare our numerical results to  the predictions of the above approximation, 
we solved (3.1) subject to initial and boundary conditions identical to  those used in 
the boundary integral computations. The numerical method involves second-order 
finite differencing in space and an explicit method for integration in time (Newhouse 
1991). Results for a / R  = 0.9 or B = 0.1, when the interface is initially a sinusoidal 
wave with amplitude half the unperturbed film thickness are shown in figure 12. The 
solid and dashed curves represent, respectively, our numerical results and those 
produced by (3.1). Our results show that the agreement between the two 
computations is quite good, and that it improves as the initial thickness of the layer 
is decreased. The lubrication theory provides a reasonable estimate for the structure 
of the interface in the vicinity of the peak, but may either underestimate or 
overestimate the thickness of the remnant layer between the peaks. Overall, we 
conclude that the lubrication theory is able to  capture the essential features of the 
motion of thin layers with a / R  > 0.90, and may be used safely in that range. The 
behaviour of thin layers is discussed in detail by Hammond (1983) and Gauglitz & 
Radke ( 1988). 

Next, we compare our results with those predicted by a variational theory 
developed by Goren (1964). The key underlying assumption in this theory is that a t  
every instant during the evolution, the system of the two fluids will tend to minimize 
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FIGURE 13. Comparison between -, our numerical results and ---, predictions of Goren’s theory 
regarding the relation between the maximum and minimum core radius for (a) A = 1, a / R  = 0, 
( b )  A = 1, a /R  = 0.6. 

its free energy and thus, the area of the interface, subject to given geometrical 
constraints. Goren computed a family of minimum-area, periodic, axisymmetric 
interfaces by specifying the period and one extreme radius of the interface. These 
interfaces have a composite shape consisting of two drops that are connected by a 
perfectly cylindrical bridge ; the slope and curvature of the interface are continuous 
at the junction. In this theory, the maximum radius of the interface is specified and 
the minimum radius is computed, or vice versa. 

As the first test of Goren’s theory, in figure 13 we plot the maximum radius versus 
the minimum radius (dashed line), and results from our numerical computations 
(solid line) for two evolutions corresponding to A = 1 and a / R  = 0,0.6. In both cases, 
our maximum radius is less than that predicted by Goren. In the case of the 
unbounded thread illustrated in figure 13 (a ) ,  the agreement between the two results 
improves considerably in the late stages of the motion as the core transforms into an 
array of drops connected by links. In the case of the annular layer illustrated in figure 
13(b), the maximum radius increases slightly in the early stages of the evolution, but 
remains relatively constant as the minimum continues to decrease signalling the 
breakup of the core. These results suggest that the accuracy of Goren’s theory will 
depend on the size of the core and that it may not be uniform during an evolution. 
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FIQURE 14. The shape of the interface ---, as predicted by Goren’s theory and -, our 
computations for (a)  A = 1, a /R  = 0, t = 77.1, ( b )  A = 1, a /R  = 0, t = 108.0, (c) h = 1, a/R = 0.6, 
t = 901, (d )  h = 1 a/R = 0.6, t = 941. 

We present a more direct comparison between our numerical results (solid lines) 
and Goren’s approximation (dashed lines) in figure 14, where we plot interfacial 
shapes at two stages in the evolution of a thread and an annular layer. In the left- 
hand and right-hand columns we have matched the minimum and maximum radii of 
the interface, respectively. In all cases, when the minimum radii are matched, the 
approximate interface has a longer link and a sharper contour. When the maximum 
radii are matched, the approximate interface has a thicker link. In general, the 
agreement between the numerical and approximate shapes is much better for the 
unbounded thread. It will be noted that in the case depicted in figure 14(d) the 
approximate interface can no longer fit inside the tube. Further computations 
showed that as h increases the agreement between the numerical and approximate 
results improves (Newhouse 1991). 
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